10 research outputs found

    Estimation of Significant Wave Height using the features of cygnss Delay Doppler Map

    Get PDF
    Significant Wave Height (SWH) is a key parameter to characterize waves, which is typically used in sea state monitoring such as wave forecast to ensure ocean navigation safety. Satellite radar altimeter is probably the primary tool to obtain SWH information. However, it cannot be used for large-scale sea state monitoring unless many of theses satellites are deployed. In this article, we aim to study the potential of Global Navigation Satellite System (GNSS)-Reflectometry (GNSS-R) in SWH measurement based on spaceborne Delay-Doppler Maps (DDMs) data. First, 3 observables (i.e., Delay-Doppler Map Average (DDMA), leading edge slope (LES) of normalized integrated delay waveform (NIDW) (LES-NIDW), and trailing edge slope (TES) of NIDW (TES-NIDW) derived from the DDMs are introduced for SWH estimation. Then, an empirical SWH retrieval model is proposed based on three observables. Subsequently, ERA5 SWH is used as reference data to verify the performance of the proposed model. The experimental results show that the Root Mean Square Error (RMSE) and Correlation Coefficient (CC) estimated by SWH of the three observables are better than 0.54 m and 0.88 m, respectively. Among them, the estimation performance based on DDMA observable is the best, with RMSE and CC of 0.49 m and 0.89 m. This study shows the potential of spaceborne GNSS-R in SWH retrieval. © 2022 IEEE.This work was supported by the Grant RYC-2016-20918 financed by MCIN/AEI /10.13039 /501100011033 and by ESF Investing in your future.Peer ReviewedPostprint (published version

    Estimation of swell height using spaceborne GNSS-R data from eight CYGNSS satellites

    Get PDF
    Global Navigation Satellite System (GNSS)-Reflectometry (GNSS-R) technology has opened a new window for ocean remote sensing because of its unique advantages, including short revisit period, low observation cost, and high spatial-temporal resolution. In this article, we investigated the potential of estimating swell height from delay-Doppler maps (DDMs) data generated by spaceborne GNSS-R. Three observables extracted from the DDM are introduced for swell height estimation, including delay-Doppler map average (DDMA), the leading edge slope (LES) of the integrated delay waveform (IDW), and trailing edge slope (TES) of the IDW. We propose one modeling scheme for each observable. To improve the swell height estimation performance of a single observable-based method, we present a data fusion approach based on particle swarm optimization (PSO). Furthermore, a simulated annealing aided PSO (SA-PSO) algorithm is proposed to handle the problem of local optimal solution for the PSO algorithm. Extensive testing has been performed and the results show that the swell height estimated by the proposed methods is highly consistent with reference data, i.e., the ERA5 swell height. The correlation coefficient (CC) is 0.86 and the root mean square error (RMSE) is 0.56 m. Particularly, the SA-PSO method achieved the best performance, with RMSE, CC, and mean absolute percentage error (MAPE) being 0.39 m, 0.92, and 18.98%, respectively. Compared with the DDMA, LES, TES, and PSO methods, the RMSE of the SA-PSO method is improved by 23.53%, 26.42%, 30.36%, and 7.14%, respectively.This work was supported in part by the National Natural Science Foundation of China under Grant 42174022, in part by the Future Scientists Program of China University of Mining and Technology under Grant 2020WLKXJ049, in part by the Postgraduate Research & Practice Innovation Program of Jiangsu Province under Grant KYCX20_2003, in part by the Programme of Introducing Talents of Discipline to Universities, Plan 111, Grant No. B20046, and in part by the China Scholarship Council (CSC) through a State Scholarship Fund (No. 202106420009).Peer ReviewedPostprint (published version

    Developing and Testing Models for Sea Surface Wind Speed Estimation with GNSS-R Delay Doppler Maps and Delay Waveforms

    No full text
    This paper focuses on sea surface wind speed estimation based on cyclone global navigation satellite system reflectometry (GNSS-R) data. In order to extract useful information from delay-Doppler map (DDM) data, three delay waveforms are presented for wind speed estimation. The delay waveform without Doppler shift is defined as central delay waveform (CDW), and the integral of the delay waveforms with different Doppler shift values is defined as integral delay waveform (IDW), while the difference between normalized IDW (NIDW) and normalized CDW (NCDW) is defined as differential delay waveform (DDW). We first propose a data filtering method based on threshold setting for data quality control. This method can select good-quality DDM data by adjusting the root mean square (RMS) threshold of cleaned DDW. Then, the normalized bistatic radar scattering cross section (NBRCS) and the leading edge slope (LES) of IDW are calculated using clean DDM data. Wind speed estimation models based on NBRCS and LES observations are then developed, respectively, and on this basis, a combination wind speed estimation model based on determination coefficient is further proposed. The CYGNSS data and ECMWF reanalysis data collected from 12 May 2020 to 12 August 2020 are used, excluding data collected on land, to evaluate the proposed models. The evaluation results show that the wind speed estimation accuracy of the piecewise function model based on NBRCS is 2.3 m/s in terms of root mean square error (RMSE), while that of the double-parameter and triple-parameter models is 2.6 and 2.7 m/s, respectively. The wind speed estimation accuracy of the double-parameter and triple-parameter models based on LES is 3.3 and 2.5 m/s. The results also demonstrate that the RMSE of the combination method is 2.1 m/s, and the coefficient of determination is 0.906, achieving a considerable performance gain compared with the individual NBRCS- and LES-based methods

    Evaluation of InSAR Tropospheric Delay Correction Methods in a Low-Latitude Alpine Canyon Region

    No full text
    Tropospheric delay error must be reduced during interferometric synthetic aperture radar (InSAR) measurement. Depending on different geographical environments, an appropriate correction method should be selected to improve the accuracy of InSAR deformation monitoring. In this study, surface deformation monitoring was conducted in a high mountain gorge region in Yunnan Province, China, using Sentinel-1A images of ascending and descending tracks. The tropospheric delay in the InSAR interferogram was corrected using the Linear, Generic Atmospheric Correction Online Service for InSAR (GACOS) and ERA-5 meteorological reanalysis data (ERA5) methods. The correction effect was evaluated by combining phase standard deviation, semi-variance function, elevation correlation, and global navigation satellite system (GNSS) deformation monitoring results. The mean value of the phase standard deviation (Aver) of the linear correction interferogram and the threshold value (sill) of the semi-variogram were reduced by –20.98% and –41%, respectively, while the accuracy of the InSAR deformation points near the GNSS site was increased by 58%. The results showed that the three methods reduced the tropospheric delay error of InSAR deformation monitoring by different degrees in low-latitude mountains and valleys. Linear correction was the best at alleviating the tropospheric delay, followed by GACOS, while ERA5 had poor correction stability

    GloWS-Net: A Deep Learning Framework for Retrieving Global Sea Surface Wind Speed Using Spaceborne GNSS-R Data

    No full text
    Spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) is a new remote sensing technology that uses GNSS signals reflected from the Earth’s surface to estimate geophysical parameters. Because of its unique advantages such as high temporal and spatial resolutions, low observation cost, wide coverage and all-weather operation, it has been widely used in land and ocean remote sensing fields. Ocean wind monitoring is the main objective of the recently launched Cyclone GNSS (CYGNSS). In previous studies, wind speed was usually retrieved using features extracted from delay-Doppler maps (DDMs) and empirical geophysical model functions (GMFs). However, it is a challenge to employ the GMF method if using multiple sea state parameters as model input. Therefore, in this article, we propose an improved deep learning network framework to retrieve global sea surface wind speed using spaceborne GNSS-R data, named GloWS-Net. GloWS-Net considers the fusion of auxiliary information including ocean swell significant wave height (SWH), sea surface rainfall and wave direction to build an end-to-end wind speed retrieval model. In order to verify the improvement of the proposed model, ERA5 and Cross-Calibrated Multi-Platform (CCMP) wind data were used as reference for extensive testing to evaluate the wind speed retrieval performance of the GloWS-Net model and previous models (i.e., GMF, fully connected network (FCN) and convolutional neural network (CNN)). The results show that, when using ERA5 winds as ground truth, the root mean square error (RMSE) of the proposed GloWS-Net model is 23.98% better than that of the MVE method. Although the GloWS-Net model and the FCN model have similar RMSE (1.92 m/s), the mean absolute percentage error (MAPE) of the former is improved by 16.56%; when using CCMP winds as ground truth, the RMSE of the proposed GloWS-Net model is 2.16 m/s, which is 20.27% better than the MVE method. Compared with the FCN model, the MAPE is improved by 17.75%. Meanwhile, the GloWS-Net outperforms the FCN, traditional CNN, modified CNN (MCNN) and CyGNSSnet models in global wind speed retrieval especially at high wind speeds

    Spaceborne GNSS Reflectometry

    No full text
    This article presents a review on spaceborne Global Navigation Satellite System Reflectometry (GNSS-R), which is an important part of GNSS-R technology and has attracted great attention from academia, industry and government agencies in recent years. Compared with ground-based and airborne GNSS-R approaches, spaceborne GNSS-R has a number of advantages, including wide coverage and the ability to sense medium- and large-scale phenomena such as ocean eddies, hurricanes and tsunamis. Since 2014, about seven satellite missions have been successfully conducted and a large number of spaceborne data were recorded. Accordingly, the data have been widely used to carry out a variety of studies for a range of useful applications, and significant research outcomes have been generated. This article provides an overview of these studies with a focus on the basic methods and techniques in the retrieval of a number of geophysical parameters and the detection of several objects. The challenges and future prospects of spaceborne GNSS-R are also addressed

    Spaceborne GNSS Reflectometry

    No full text
    peer reviewedThis article presents a review on spaceborne Global Navigation Satellite System Reflectometry (GNSS-R), which is an important part of GNSS-R technology and has attracted great attention from academia, industry and government agencies in recent years. Compared with ground-based and airborne GNSS-R approaches, spaceborne GNSS-R has a number of advantages, including wide coverage and the ability to sense medium-and large-scale phenomena such as ocean eddies, hurricanes and tsunamis. Since 2014, about seven satellite missions have been successfully conducted and a large number of spaceborne data were recorded. Accordingly, the data have been widely used to carry out a variety of studies for a range of useful applications, and significant research outcomes have been generated. This article provides an overview of these studies with a focus on the basic methods and techniques in the retrieval of a number of geophysical parameters and the detection of several objects. The challenges and future prospects of spaceborne GNSS-R are also addressed.13. Climate actio

    Pan-Cancer Analysis of the Roles and Driving Forces of RAB42

    No full text
    RAB42 is a member of the RAS family. However, the roles and driving forces for RAB42 in tumors remain elusive. In this study, we performed a comprehensive pan-cancer analysis of the roles and regulatory mechanisms of RAB42 using bioinformatics and experiments. Online databases such as Sanger Box, ACLBI and TIDE were used to search for the expression levels, prognostic value and immune features of RAB42. We observed that RAB42 expression was upregulated in most tumors and was closely associated with poor prognosis. Enrichment analysis indicated that RAB42 was related to multiple biological functions, especially the immune process. RAB42 expression had a positive correlation with immune cell infiltration and immune checkpoint gene expression. RAB42 had a high predictive value for immunotherapy efficiency. Our study screened out susceptible drugs for the RAB42 protein by sensitivity analysis and virtual screening. Many key driver genes such as TP53 contributed to RAB42 expression. DNA methylation, super-enhancer and non-coding RNAs were the epigenetic factors responsible for RAB42 expression. In brief, RAB42 could serve as a diagnostic and prognostic biomarker in many tumor types. RAB42 might be a predictive biomarker and a new target for immunotherapy. Genetic and epigenetic factors were essential for RAB42 overexpression in tumors
    corecore